
RWTH Aachen University

Bachelor Thesis

Performance and Error Analysis of ASTC compressed
Vector Fields in GPU accelerated Particle Advection

by

Jan Frieder Milke

RWTH Aachen University

Bachelor Thesis

Performance and Error Analysis of ASTC compressed
Vector Fields in GPU accelerated Particle Advection

for the degree of B.Sc. in Computer Science

by

Jan Frieder Milke
Student Id.: 348 686

Prof. Dr. Torsten W. Kuhlen
Visual Computing Institute

Prof. Dr. Leif Kobbelt
Visual Computing Institute

Supervisor: Ali C. Demiralp, M.Sc.
Simon Oehrl, M.Sc.

Date of issue: August 26, 2021

Statement

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig im Rahmen der an der
RWTH Aachen üblichen Betreuung angefertigt und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

I guarantee herewith that this thesis has been done independently, with support of the
Virtual Reality Group at the RWTH Aachen University, and that no other than the
referenced sources were used.

Aachen, August 26, 2021 ...

ABSTRACT

GPU-driven visualization becomes increasingly more popular due to its
immense parallel compute power on even simple workstations. But the lim-
ited amount of dedicated video memory poses a severe bottleneck for the
growing demands of visualization. In order to reduce the amount of data
that needs to be uploaded to the GPU this work examines the effect of lossy
ASTC texture compression on vector fields in steady and unsteady condition.
The impact on memory and performance are measured in conjunction with
the introduced error separately in geometric space and image space. This
study discovered that ASTC texture compression is applicable for vector field
compression in the context of visualization, however suffers a perceivable pre-
cision loss in turbulent vector fields at the benefit of an overall significantly
faster computation performance. Normalization because of the encoder’s
supported value range showed to have additional effect on accuracy and run-
time which indicates possible optimization potential for texture compression
based vector field encoding.

1

CONTENTS

1. Introduction 9

2. Related Work 11

3. Theoretical Background 13
3.1. Vector Field Visualization . 13

3.1.1. Grids . 14
3.1.2. Particle Advection . 15

3.2. The GPU . 18
3.2.1. GPU Architecture . 18
3.2.2. Rendering Pipeline . 20
3.2.3. Compute Shader . 21

3.3. Texture Compression . 22
3.3.1. ASTC . 23

3.4. Error Analysis . 24
3.4.1. Geometric Evaluation . 24
3.4.2. Visual Evaluation . 25

4. Research Approach 27
4.1. Datasets . 27

4.1.1. Research Vessel Tangaroa . 28
4.1.2. Half Cylinder Ensemble . 28
4.1.3. Cloud-Topped Boundary Layer 29

4.2. Implementation . 29
4.2.1. Pre-Processing . 30
4.2.2. Visualization . 31

3

CONTENTS

4.2.3. Evaluation . 33

5. Results 35
5.1. Geometric Error . 36

5.1.1. Block Size Impact . 36
5.1.2. Preset Impact . 38

5.2. Visual Error . 40
5.3. Performance . 41

6. Discussion 45

7. Conclusion 49

8. Bibliography 51

Appendices 55

A. Additional Results 57
A.1. Geometric Error . 58
A.2. Visual Error . 61
A.3. Performance . 64

4

LIST OF FIGURES

3.1. (a) Cartesian grid, (b) regular grid, (c) rectilinear grid, (d) structured grid 15
3.2. Streamline integrated over three steps in a time-steady vector field. Euler

integration scheme and unit-velocity scenario. 16
3.3. Pathline integrated over three timesteps in a time-varying vector field.

Euler integration scheme and unit-velocity scenario. 16
3.4. Traditional model of a CPU/GPU system. Here, the GPU is accessing

system memory and disk memory indirectly by the CPU, but new com-
mercially available hardware is capable to allow the GPU direct access [14,
28]. 19

3.5. Model of the Rendering Pipeline. Green stages are programmable shader
stages, the remaining boxes are fixed function. Yellow stages allow con-
figuration. Courtesy to [1]. 21

3.6. To invocate the Compute Shader a domain must be defined in 3D space.
Each node represents a threadblock, which itself holds a scaleable amount
of threads. 21

3.7. Example compression and decompression of an image using the S3TC
scheme with 2x2 block size. L.t.r.: Original image, compressed represen-
tation, decompressed image with erroneous texel. ci denotes a reference
color for each block. 23

4.1. Example visualizations of the datasets used in this thesis [7]. 27
4.2. L.t.r.: Conversion from source data to an ASTC encoded representation.

ti denotes texel i, bk an ASTC block. 31
4.3. Vector look-up & interpolation during integration of ASTC compressed

data. ti,j denotes texel i at depth j, bi,j an ASTC block, vi,j the recon-
structed vector, p the interpolated result at a certain position. 32

5

LIST OF FIGURES

5.1. Rendered integration results of the source datasets. Displayed are subim-
ages showing the highly dynamic regions. 35

5.2. Timings of each datasets compression process in hours. Values were ob-
tained using the 4x4 block size and VN method. Measurements were
taken on the high performance workstation. 38

5.3. Individual average trajectory error projected to the XY plane. Visualiza-
tion in seed space, where a grid node represents a trajectories initial seed.
Projection was performed by averaging over the Z axis and contour lines
are established to separate regions of different error magnitude. Values
were obtained using the 4x4 block size and VN method. 40

5.4. Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth. Images are subregions
of the originals showing the high dynamic regions, whereas the SSIM was
calculated on the whole image. 41

A.1. Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth. 61

A.2. Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth. 62

A.3. Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth. 63

6

LIST OF TABLES

4.1. Texture and buffer read operations needed during advection to retrieve
a trilinearly interpolated vector from a single texture. Time interpolated
vectors effectively need double the amount of read operations. 33

5.1. Overview of the number of vertices skipped and trajectories counted as
early terminated if both source and compressed trajectories were tested
for ill-defined vertices beyond the vector fields boundaries. Measurements
are given relative to the total vertex and trajectory count. For compressed
trajectories the exhaustive preset at 4x4 block size using vector normal-
ization was used as reference. 36

5.2. RMS of the average and maximum trajectory error for each dataset and
normalization method using different block size configurations. Values
were obtained using the Exhaustive preset for compression. 37

5.3. Filesize of each dataset in source and ASTC representation using different
block sizes. 38

5.4. RMS of the average and maximum trajectory error for each dataset and
normalization method using different compression presets. Values were
obtained using the 4x4 block size configuration for compression. 39

5.5. SSIM measures of image pairs between source and compressed trajecto-
ries. The letters A-H resemble the different unique viewpoints from which
each image was evaluated. The compressed representatives were obtained
using Exhaustive compression, 4x4 block size and the VN method. All
images can be found in the Appendix. 41

5.6. Timings of the data upload processes. Values obtained from compressed
datasets with Exhaustive preset and 4x4 blocksize configuration. 42

7

LIST OF TABLES

5.7. Timings of the particle advection (compute) processes. Values obtained
from compressed datasets with Exhaustive preset and 4x4 blocksize con-
figuration. 42

5.8. Timings of each datasets preprocessing before compression in seconds.
Measurements were taken on the high performance workstation. 43

5.9. The size of each dataset in Megabyte divided by the timings of each
datasets compression process in seconds. Measurements were taken on
the high performance workstation. 43

A.1. Normalized RMS of the average vector component error for each data
set with different compression presets and normalization methods. Range
based Normalization of the RMS by componentwise global maximum and
minimum of the dataset. Values taken from 4x4 block size configuration. 58

A.2. Normalized RMS of the average vector component error for each data
set with different compression presets and normalization methods. Range
based Normalization of the RMS by componentwise global maximum and
minimum of the dataset. Measurements at lower presets are set relative
to the Exhaustive preset. Values taken from 4x4 block size configuration. 59

A.3. RMS of the average and maximum trajectory error for each dataset and
normalization method using different block size configurations. Measure-
ments at lower resolutions are set relative to the 4x4 block size resolution.
Values were obtained using the Exhaustive preset for compression. 60

A.4. RMS of the average and maximum trajectory error for each dataset and
normalization method using different compression presets. Measurements
at lower presets are set relative to the Exhaustive preset. Values were
obtained using the 4x4 block size configuration for compression. 60

A.5. Timings of each datasets compression process in seconds. Measurements
were taken on the high performance workstation. 64

A.6. Timings of the compression processes for each dataset and normalization
method using different presets. Measurements at lower presets are set
relative to the Exhaustive preset. Values were obtained using the 4x4
block size configuration. 64

8

CHAPTER 1

INTRODUCTION

Scientific visualization processes are utilized and vital for many domains to perform
feature detection within large scale volumetric datasets. Vector fields are a specifically
challenging subject as for their richness in information which impacts the computational
complexity of visualization methods and the sheer data size as well [47]. A common
visualization method for these in flow visualization is streamline integration, i.e., the
construction of trajectories from traveling particles whose flow is described by the vector
field [23]. The need for high resolution data in order to capture even small features
within the data [47] leads to an explosive growth of spatial and temporal dimension-
size, simultaneously increasing the file size [6]. The compute power needed to process
massively sized files in reasonable time resulted in large scale visualization traditionally
being subject to supercomputers with limited accessibility only. However, during the last
decades GPUs emerged as general-purpose processing tools which are capable of immense
compute power and found in most consumer level desktop PCs today [31]. A whole
branch of visualization is nowadays dedicated to accessible GPU-driven approaches [4].
However, the raw GPU compute power is cut off by a major pithole: on-board memory of
GPUs is limited in size, fixed per model and not growing at the same pace as processing
power. Beyer et al. even assume that technology will never catch up to fit the entirety
of sophisticated datasets into the GPUs memory at once [4]. Treib et al. were concerned
with bandwidth limitations of GPUs in recent works as well and discovered in case of
visualizing 4D flows, that only 1% of the processing time was spent on transforming the
data into a visualization and the remaining time was spent on I/O operations of the
GPU paging data from memory or disk [46]. Many approaches to circumvent the GPUs
memory limitations exist and some of them were described by Beyer et al. and Rodŕıguez
et al. [3, 4]. A promising candidate is lossy compression, which allows for massive
reduction of file size at the cost of small errors in the dataset. The GPUs native hardware
accelerated support for certain decompression schemes could accelerate the performance

9

CHAPTER 1. INTRODUCTION

additionally since bilinear and even trilinear interpolation comes at very small cost
compared to manual implementation [1]. ASTC represents a modern technique which
contrary to its competitors is capable of describing a great variety of data types in
one single format. It comprises many modern advances in texture compression and is
capable of high quality decompression for not only image data but also uncorrelated
data [16, 29]. However, only limited research has been done about lossy vector field
compression in the domain of GPU-driven streamline integration. Therefore, this work
aims to implement ASTC compression for vector fields and analyze its applicability for
visualization by investigating its error susceptibility and performance in the context of
streamline integration.

This study will first present a selection of related work in the context of vector field
compression and visualization in Chapter 2. The theoretical basics are provided next in
Chapter 3 and encompass a quick overview of vector field visualization, GPU architec-
ture, texture compression and error metrics. The implementation specifics of the ASTC
particle advector and a description of the investigated datasets are given in Chapter
4. All results are then presented in Chapter 5, subdivided into the different aspects of
analysis: geometric error, visual error and performance. This study then concludes with
a discussion of the results in Chapter 6 and a summary in Chapter 7. The appendix pro-
vides alternative views of the presented data, additional findings which were not subject
to analysis and all SSIM highlighted images of each datasets visualization scenarios.

10

CHAPTER 2

RELATED WORK

Fitting large scale datasets into limited memory for visualization is an active research
area [3, 4]. Rodriguez et al. presented already an extensive overview on this topic with
focus on the task of scalar field visualization and direct volume rendering [3]. But once
the perspective shifts towards higher dimensions contributions become sparse. Here,
recent literature covering a range of methods tailored towards faster visualization of
large scale vector fields is presented.

In 2001 Lum et al. used temporal encoding with lossy compression to bring interactive
visual exploration of time varying scalar datasets to low cost desktop PCs [21]. Their
approach summarizes multiple timesteps located at a fixed spatial position into a single
scalar that is quantized and in the process also compressed by Discrete Cosine Transform
(DCT). DCT is a coefficient based encoding that is applied in the frequency domain and
uses cosine signals to model the original signal. It can be a lossy compression if, e.g.,
lower energy coefficients are quantized at a coarser resolution [3]. Lum et al. utilized
the lossy approach to further reduce storage and bandwidth requirements, enabling the
interactive investigation of 4D datasets at their time [21].

In 2003 a different approach was pursued by Theisel et al. as they focused on a topology
preserving compression method for 2D vector fields [43]. They interpreted the vector
field as a piecewise triangular mesh and performed half-edge collapses and other mesh
reduction operations to compress it. But they enforced the condition that the global
topology of source and compressed vector field must coincide with regards to critical
points and separatrices through an iterative design which tests the topological conse-
quences of a mesh reducing operation before it is applied permanently. Their results
showed that a compression rate of 95.3% could be achieved while still retaining the
same topological structure [43].

11

CHAPTER 2. RELATED WORK

In 2010 Golembiovskỳ approached time varying vector field compression and presented
a custom encoding method [11]. He used a logarithmic transformation to quantize the
3D grid of each component separately, thereby already performing lossy compression.
Additionally, the encoded data was decomposed into blocks of equal size and then further
compressed in temporal dimension by encoding temporal redundancy similar to the video
compression schemes. With this method they were able to reduce the file size by 80-90%
while still maintaining acceptable errors at the cost of very high decompression times
per frame [11].

In 2016 Treib et al. presented a compression technique for turbulent vector fields that
is suited for particle tracing on regular desktop GPUs [45]. Their main technique was
Discrete Wavelet Transform (DWT) compression followed by a run-length and Huffman-
encoding, achieving an efficiency of 3 bits per floating point vector. DWT is, similar to
DCT, a compact coefficient-based representation in frequency domain but also preserving
the spatial domain [3]. In combination with prior bricking to subdivide the dataset
into smaller chunks, which can be easily uploaded to video memory as needed, they
constructed a fast out-of-core method that was able to cut down visualization processing
time by 90% [45]. A drawback of their method was additional overhead imposed by the
need to fully decompress a brick inside video memory and transferring it into a texture
before use.

In 2020 Liang et al. went for an error-bounded compression technique which preferred
the topological preservation of critical points in the vector field [19]. Their core idea
was to compute an error-bound for each vertex and feed it to an prediction-based lossy
compressor which adapts compression based on the local error-bound. This output and
the vertex-wise error bounds are then further encoded by a lossless compressor. The
complete process is capable of in-situ processing which however is computationally more
expensive than offline compression. The results of their work showed that they could
compress a 3D vector field by approximately 87% and visualization of the topological
features using the compressed dataset proved that all topological critical points could
be preserved [19].

Research in this subfield of visualization seems limited though recent contributions have
shown that the accuracy loss of lossy compression can be acceptable and in range of the
error introduced by frequently used interpolation functions [44]. Especially the use of
hardware accelerated texture compression methods is absent when it comes to vector
fields. This work therefore aims to investigate the possible acceleration and file size
savings if a regular GPU supported compression method is applied on vector field data
and the error which accompanies this approach.

12

CHAPTER 3

THEORETICAL BACKGROUND

This chapter explains the theoretical basis of this study. The main concepts of vector
field visualization are provided first in Section 3.1. Characteristics of the GPU hardware
and its API are considered next in Section 3.2. Extending on the GPU basics, Section
3.3 involves a description of texture compression in general and ASTC in particular.
Finally, the applied error metrics used for geometric and visual analysis are provided in
Section 3.4.

3.1. Vector Field Visualization

Vector fields are a non-trivial task in visualization as they hold complex information for
each point in space and time. They are described by the mapping

V : An+k → Bn

V (x, t) 7→ v, (3.1)

for n ∈ N denoting the spatial dimension and k ∈ {0, 1} signaling the temporal depen-
dency [10, 17]. The resultant broad range of vector fields discourages a unified visual-
ization approach and in practice there are often different methods desired for either 2D
or 3D fields.

Scalar fields can be depicted a special case of 1D vector fields. They hold only a single
scalar for each point in space and time and are therefore able to describe any vector
field by construction of a separate scalar field for each component. Their structural
simplicity and importance in visualization made them a well understood subject with

13

CHAPTER 3. THEORETICAL BACKGROUND

custom visualization methods [4]. Because of their special relationship the concepts of
scalar field visualization are applicable on vector fields as well. Accordingly, traditional
methods such as direct volume rendering through raycasting into the data or isosurface
construction by prior set thresholds are possible. But they are impractical as they re-
quire adaptation which has been shown to increase computation cost significantly [9].
Alternative methods specifically designed for vector fields are generally preferred, classi-
fied into direct, dense texturebased, geometric and feature-based approaches [15]. Most
of these methods exploit the semantic vicinity of vector fields to flows by velocity. The
velocity of a flow is a derivative quantity represented by a vector field [23]:

V (x, t) =
dx

dt
(3.2)

Integration of this vector field will yield a flow and therefore, for the task of visualization,
vector fields and flows are often pictured equivalent [22].

Direct flow visualization is concerned with the direct representation of the vector field
through color coding or simple arrow glyphs. It is computationally cheap, but occlusion
becomes a great concern in 3D space. Dense texturebased approaches mark the paths
particles would take in a flow by integrating the whole domain of a texture, e.g. given
as white noise. They are more suited for 2D fields, since they capture a lot of detail
and therefore suffer heavy occlusion in 3D which requires difficult post-processing to
resolve [13, 36]. Geometric flow visualization follows a similar approach, but integrates
singular particles instead of the whole flow domain and constructs geometric objects
upon the derived flow characteristics. This enables fine control over the general vi-
sualization and computational expenses, allowing to reduce clutter while still providing
meaningful insight. Feature-based approaches investigate the topology of the vector field
and extract flow important features like vortices. However, the entire domain needs to
be analyzed beforehand and therefore imposes a significant computation overhead [15,
23].

At the core of this work will be particle advection as the main application of geometric
flow visualization. It allows visualization at interactive framerates and is well suited for
the case of 3D vector fields in steady and unsteady condition. But before this topic is
further described, the discrete nature of the data will be addressed first.

3.1.1. Grids

Experimental or simulation-driven construction of a vector field is generally a time-
demanding task and consequently performed offline prior to analysis. This rises need
for a suiting data structure to fit the complete field in an efficient manner. This work
will focus on regular grids where sampled elements are stored as nodes in a spatially or-
dered layout and whose correct position in space can be reconstructed through distance-

14

3.1. VECTOR FIELD VISUALIZATION

(a) (b) (c) (d)

Figure 3.1.: (a) Cartesian grid, (b) regular grid, (c) rectilinear grid, (d) structured
grid

weighted edges [52]. Structured grids, shown in Fig. 3.1, are common results of such
discretization processes as they offer an intuitive indexing of each grid node [52]. These
are composed of hexahedral cells in 3D space and maintain an implicit neighborhood
connectivity which allows easy indexing of the individual grid cells. Special cases of
structured grids are rectilinear, regular and Cartesian grids, which conform to rectangu-
lar cuboid cells [52]. Within scope of this work are regular and Cartesian grids, of which
the former are composed of homogeneously sized cells and the latter are a special case
of the regular grid with uniform sized cells.

It is likely that intermediate values need to be obtained from the sampled grid during
visualization. A common way to do this is called linear interpolation [42]. Given two
discrete values a and b, a linear combination of these according to some λ ∈ [0, 1] can
smoothly interpret the space between them [39]:

x = λ · a+ (1− λ) · b (3.3)

Linear interpolation is performed multiple times for higher order dimensions, commonly
referred to as bilinear in 2D and trilinear in 3D [1]. Other methods like Lagrangian
interpolation exist and also promise a more realistic sampling of intermediate values in
non-linear environments[44], but the simplicity and performance of linear interpolation
is considered well enough [5].

3.1.2. Particle Advection

Particle advection is an integration based visualization method where the given vector
field is interpreted as a velocity field to recreate the flow upon its properties. It follows
a two-part process [23]:

1. Seeds, the initial particles, are placed inside the dataset according to a certain
seeding strategy.

15

CHAPTER 3. THEORETICAL BACKGROUND

2. Trajectories are constructed by tracing the particles as they move through space
and time, compliant to the prevailing velocity.

The first step, choosing a correct seeding strategy, is an open research topic itself. It
greatly impacts the capture of important features, but also the generation of clutter. For
instance, a dense seeding will capture even smallest features but they may be occluded
by other trajectories, whereas a too sparse seeding would allow good visibility which
however is likely to miss out interesting features [23]. Therefore, sophisticated solutions
often prefer to place seeds within interesting regions instead of broadly spreading seeds
over the whole domain [51]. For the scope of this work, an even seeding within a specific
range is regarded the best compromise between complexity and the capture of many
features. Occlusion will be a concern for evaluating the results at image level, but
comparison of the geometric instances is independent of this problem and will receive a
more representative set of samples.

Figure 3.2.: Streamline integrated over three steps in a time-steady vector field. Euler
integration scheme and unit-velocity scenario.

Figure 3.3.: Pathline integrated over three timesteps in a time-varying vector field.
Euler integration scheme and unit-velocity scenario.

The second, computationally most demanding part is the construction of trajectories.
There are three basic types of trajectories: streamlines, pathlines and streaklines [23].
For time constant steady fields all trajectories come down to streamlines which are every-
where tangent to the flow field. Figure 3.2 shows an exemplary streamline constructed
from a single particle within a steady vector field. Unsteady fields vary in time and
are generally described by streaklines or pathlines, since streamlines would only capture
the flow at a single timestep [23]. Streaklines behave like dye, as particles are con-
stantly ejected from the seeds initial position. Their trajectories are constructed from
all particles which were spread from the respective seeding location, therefore resulting
in a trace which stays affected by the flow field. Pathlines on the other hand describe

16

3.1. VECTOR FIELD VISUALIZATION

the specific way a single particle travelled inside the changing field. These trajectories
are constructed by the waypoints a particle traveled along and are not affected by the
changing field [23]. The visualization of a pathline inside an unsteady vector field is
shown in figure 3.3.

The algebraic technique to generate any trajectory is integration of the vector field by
solving the ordinary differential equation (ODE) [17]

V (x(t), t) =
dx

dt
= v, (3.4)

where V represents the vector field, x(t) the time-dependent particle position at time t
and dx

dt
the tangent (velocity) at this position. The ODE is constructed and solved for

each particle by setting its initial position as initial condition [17]:

x(0) = x0 (3.5)

However, V is most often represented by a discrete dataset Ṽ which requires interpolation
for intermediate values and numeric integration. Therefore, the analytical solution to
this problem is generally not available and the exact trajectory starting at x0 can’t be
constructed [17]. Instead, the approximation x̃(t) is obtained by solving

Ṽ (x̃(t), t) =
dx̃

dt
= ṽ, (3.6)

whose behavior is strongly dependent on the chosen interpolation scheme and numeric
integration method [17].

The core idea of numeric integration is to continuously add small displacements to the
previous particle position based on the fields velocity. The Eulerian method implements
this scheme straightforward by calculating the displacement based on the particles cur-
rent positions velocity as [34]

dx̃ = dt · Ṽ (x̃(t), t) (3.7)

for a small dt. This method however is erroneous, as ṽ evaluated at time t is assumed to
be constant for the duration of dt. Instead, Runge Kutta 4th Order integration estab-
lished as the de facto standard method, preserving good accuracy at small computational
overhead [34]. It computes four intermediate velocities at three different timesteps and
interpolates the result according to the following Equation: [34]

k1 = Ṽ (x̃(t), t)

k2 = Ṽ (x̃(t) + dt · k1
2
, t+

dt

2
)

k3 = Ṽ (x̃(t) + dt · k2
2
, t+

dt

2
)

k4 = Ṽ (x̃(t) + dt · k3, t+ dt)

dx̃ = dt(k1 + 2k2 + 2k3 + k4)
1

6
(3.8)

17

CHAPTER 3. THEORETICAL BACKGROUND

3.2. The GPU

As indicated by name, the Graphics Processing Unit (GPU) is a processor on its own
traditionally designed to quickly process large amounts of geometry for presentation on a
screen. Formerly, it was constructed as a closed configurable-only system limited to this
type of tasks. However, during the last two decades, its interface evolved and permitted
access to a wide range of programmers intents [1, 31]. This led to the emerge of Gen-
eral Purpose Computations on GPU (GPGPU) which refers to applications that moved
their computational expenses of non-graphical tasks from the CPU to the GPU [26, 31].
The motivation to shift computations on the GPU lies within its orthogonal architec-
ture design and execution model as compared to CPUs which allows for a significant
acceleration of tasks if certain conditions are met [31].

This section aims to introduce the relevant aspects of the GPUs processing design and
core mechanics which leverage its compute power. First, the physical architecture is
described to show both the origin and pitfalls of the GPUs compute power. Then, the
compute flow is addressed which explains how the GPU can be accessed and instructed
for processing. Major contributions to this topic were gathered by Ankenine-Moller et
al. and Owens et al. [1, 31], which can be compared with current specifications of the
GPU manufacturers NVIDIA and AMD [14, 28].

3.2.1. GPU Architecture

Today’s GPUs are driven by the power of massive parallelization, aimed for maximum
throughput. For this purpose, they primarily employ a large amount of specialized
processors that are designed for operating on a global task in concurrency.[1] These
processors are called shader cores[1] and can amount up to multiple thousands on current
generation GPUs [14, 28]. They are optimized to be synchronized in execution and to
perform the same instructions, but each on their individually resident data, which is
denoted Single Instruction, Multiple Dispatch (SIMD) function [1]. Accordingly, the
respective task needs to be implemented core-invariant and core-independent to use the
full potential of the GPUs compute power. Additionally, specialized chips are soldered
to the GPU designed to perform specific tasks in very fast fashion [1]. Since these cannot
be programmed, they are called the fixed-function hardware of the GPU. Within this
work decoder chips and special texturing hardware become important which allow on-
the-fly decompression of compressed data and accelerated interpolation of intermediate
data values [1]. This allows GPUs to outpace certain parallelizable data tasks of CPUs
by a large factor [31].

However, as pointed out by Beyer et al. and Rodriguez et al., many contributions
to scientific visualization discovered bandwidth to become the main limiting factor of

18

3.2. THE GPU

Figure 3.4.: Traditional model of a CPU/GPU system. Here, the GPU is accessing
system memory and disk memory indirectly by the CPU, but new commercially available
hardware is capable to allow the GPU direct access [14, 28].

GPU-driven data visualization [3, 4]. The reason lies within the GPUs limited amount
of fast accessible video memory, whose bandwidth can reach a communication speed of
448 GB/s and even more [28]. If the video memory is exhausted the shader cores need
to fetch data from the CPU managed system memory which can be slower by a factor of
14 through a reduction in communication throughput down to 31.51 GB/s in case of the
currently standard PCIe Gen4 interface [1]. As a consequence, processing on the GPU is
stalled until the data has been fetched into local memory. Fig. 3.4 shows an exemplary
model of this CPU-GPU communication relation. Several approaches to mitigate the
effect of latency introduced by communication with the system memory exist and are
being examined by an active research area. But all present approaches require to decide
whether to value information over latency or vice versa [3, 4]. Three basic techniques,
ranging from one trend to the other, are the following:

Out-of-core algorithms are designed to process the whole dataset by chunks that
fit into certain boundaries like the available video memory. They accept the cost
of communication and try to hide the latency through smart optimizations in the
code and, e.g., ignore currently irrelevant data regions or try to predict them [4].

Region of interest (RoI) selection is another viable approach and similar to out-of-
core methods. Instead of processing the whole dataset, only preselected regions of
the dataset are examined, reducing the information content of the visualization.
These regions may be extracted by prior offline analysis or meta knowledge about
the dataset to prevent missing informative features [18].

Compression can be performed lossless or lossy, the latter meaning a permanent
reduction of information along with the filesize. Lossless methods are limited in
efficiency through the concept of entropy itself [37] and may not offer enough
reduction in size for a significant acceleration. Lossy methods on the other hand

19

CHAPTER 3. THEORETICAL BACKGROUND

accept a configurable loss of information in form of reduced accuracy, thereby
achieving much bigger savings [35, 45].

Out-of-core methods and RoI selection try to conceal the bandwidth limitations of the
GPU, but they alone fail at effectively enabling investigation of the global dataset at
near-interactive timings. A combined approach including compression is penalized by a
loss in precision, but it includes multiple advantages. Next to a smaller communication
throughput, the overhead of decompression is near zero since fixed-function hardware of
the GPU is capable to decompress only local regions of the data, allowing for random-
access traversal without prior decompression of the full dataset [29]. Additionally, linear
interpolation comes at near zero cost [38].

The GPUs hardware is therefore well suited for the task of particle advection, but
measures to overcome the bandwidth bottleneck need to be taken in order to perform
interactive analyses. Here, the focus will be on lossy compression, which is described in
greater detail later in Section 3.3. The next question to be answered is how the GPU is
instructed for operation and what is special about its compute flow.

3.2.2. Rendering Pipeline

GPUs are traditionally exposed to the programmer by a limited set of graphics APIs:
OpenGL, DirectX and Vulkan to name a few [1]. They own a logical and a physical
model, of which the first is accessed by the programmer and the latter implemented by
the GPU manufacturer, offering a unified GPU interface in a heterogenous hardware
environment [1].

The canonical execution model of the GPU is called the Rendering Pipeline and is
shown in Fig. 3.5 [1]. It is primarily meant to transform 3D scene geometry comprised
of geometric primitives (i.e. points, lines, triangles) into a discrete 2D representation.
These primitives are given to the GPU as vertices that describe positions in 3D space
and later are transformed into fragments which each resemble the potential content of
a single pixel. The execution flow of the traditional rendering pipeline has been highly
optimized by GPU manufacturers and contains the following tasks [1, 31]:

Vertex Processing: Vertices describing the primitives are processed according to a
shader program to transform or add vertex-local information.

Primitive Assembly: Vertices are assembled into geometric primitives.

Rasterization: Primitives are transformed into fragments, a discrete pixel repre-
sentation.

20

3.2. THE GPU

Pixel Processing: Each generated fragment is processed individually as instructed
by a shader program.

Composition: The final fragments are composed into an image.

A more subdivided description is given by Figure 3.5. It emphasizes the unidirectional
workflow of the rendering pipeline where each stage feeds its output as input to the
next stage, thereby dictating the computational domain on which threads are invoked
for processing.

Figure 3.5.: Model of the Rendering Pipeline. Green stages are programmable shader
stages, the remaining boxes are fixed function. Yellow stages allow configuration. Cour-
tesy to [1].

The vertex shader therefore initiates threads based on the complete set of vertices resem-
bling the input geometry. But the input gets thinned out, i.e. during clipping, omitting
vertices outside the cameras view, and is finally transformed into fragments during ras-
terization. The fragment shader resembles the last programmable stage and is executed
upon a resolution and geometry dependent number of fragments which survived the
prior stages [1].

Though by design it is optimized for rendering graphics, the real behavior is up to the
programmer’s implementation of the shader programs and how they process their input
and output.

3.2.3. Compute Shader

num groups x

n
u
m
g
ro
u
ps

y

nu
m
gr
ou
ps
z

Figure 3.6.: To invocate the Compute Shader a domain must be defined in 3D space.
Each node represents a threadblock, which itself holds a scaleable amount of threads.

21

CHAPTER 3. THEORETICAL BACKGROUND

On modern devices exists a second way to access the GPUs compute power, primar-
ily meant for GPGPU aside traditional rendering tasks. It is an alternative execution
model which only consists of a single shader program called Compute Shader within
OpenGL [1]. As explained by Owens et al. it is primarily a more natural and direct
interface for the programmer to access the GPU for general purpose computations [31].
As it does not adhere to a multi-stage model, contrary to the Rendering Pipeline, it has
no output interface such that the task of data management is completely up to the pro-
grammer. Thread invocation is abstract as well and not dependent on vertices anymore,
but replaced by a spatial computation domain that must be defined by the programmer
before execution [26, 31]. A visualization of the Compute Shaders invocation domain is
shown in Figure 3.6.

The Compute Shader execution model offers the same programmability as the rendering
pipeline. However, the interface exhibits easier access to the GPUs compute power for
non-rendering tasks [31]. A split approach is therefore suggested by Owens et al. [31],
which can perform shape generation from raw data on the Compute Shader and shape
visualization as a natural rendering approach by the Rendering Pipeline.

3.3. Texture Compression

Sellers et al. and Shreiner et al. define textures as shader accessible storage types that
are designed to hold image type data [38, 39]. Their elements are arranged accordingly
on a grid structure ranging from 1D to 3D [1] where each node holds one to four values,
depending to the assumed color model and existence of an alpha channel. They resemble
a specialized type of data buffer in video memory which was optimized for fast access
timings by the GPU manufacturers due to the importance of image data in the context of
rendering [1]. As a consequence they own two unique features compared to regular data
buffers: support for hardware-accelerated linear interpolation and decompression.[38].
The presence of hardware support for linear interpolation allows to directly look up
intermediate data values at nearly zero cost in all dimensions [38]. Therefore, this
design makes them a preferable choice for volumetric visualization and is also applied
by Nagayasu et al. [24].

The second feature is hardware support for compression, as it is a common technique
to reduce image type data in size [37]. A wide variety of compression techniques to
encode images into alternative descriptions exists [37], however only few of them profit
of GPU acceleration. Those who profit are generally based on the lossy S3TC scheme:
Independent blockwise encoding of texels, independent and fast decoding of blocks,
fixed size compression [1]. The texels within a block shaped region are encoded by
interpolant weights λi ∈ [0, 1] which calculate a weighted average of 2 reference colors
c1 and c2. Each block holds some control information and has a fixed size memory

22

3.3. TEXTURE COMPRESSION

Figure 3.7.: Example compression and decompression of an image using the S3TC
scheme with 2x2 block size. L.t.r.: Original image, compressed representation, decom-
pressed image with erroneous texel. ci denotes a reference color for each block.

footprint irrespective of its content [1]. This allows to decompress blocks individually
and infer the exact block that is holding a certain texel. Figure 3.7 shows an exemplary
compression and decompression of an image using the S3TC scheme for a block size of
2x2. In general, GPU compression techniques encode texels only to 2D blocks of size
4x4 and restrict the interpolation factor precision to 2 or 3 bits.[1] 3D compression can
be imitated by a sliced 3D approach where 2D compressed slices are stacked upon each
other [27]. However, a limitation inherent to block-based compression additionally to
the inevitable precision loss is the generation of artifacts. In image data, these are visible
as discontinuities between adjacent blocks, especially at low bit rates [3]. Well known
S3TC-based techniques are e.g. BC7 for low dynamic range (LDR) colors with 8bit
precision and BC6H for high dynamic range (HDR) profiles and 16bit precision [1].

3.3.1. ASTC

ASTC is an elaborated lossy compression technique which was published 2012 by Nystad
et al. [29] and is precisely specified for OpenGL [16]. At core ASTC is an S3TC based
technique with a block memory footprint of 128bit. Besides that, it offers great versatility
by multiple block sizes, native 3D compression and LDR as well as HDR profile support
within a single codec [29]. The supported block resolutions range from 4x4 to 12x12
texels in 2D and 3x3x3 to 6x6x6 texels in 3D [29]. Most information is saved on a per
block basis and can be locally optimized by the encoder, the only global state variables
are the block resolution and color profile. The block itself is a highly optimized construct
which employs an encoding that allows the use of fractional bits and therefore more
compact representation. It can hold up to four partitions which each describe a pair of
color endpoints, assignable on a per-texel basis [29]. Additionally, a second weight can
be saved per texel to better represent data which has uncorrelated values across their
color channels [16].

Comparative analysis has shown that ASTC compression was slightly behind BC6H and
BC7 regarding LDR and respectively HDR image quality, but outperformed any other

23

CHAPTER 3. THEORETICAL BACKGROUND

technique [8, 29]. The application of ASTC compression on non-image data however was
not subject to thorough investigation yet though it offers a rich potential by its adaptive
design.

3.4. Error Analysis

A performance metric is inherently given by the time a certain operation needs. But
in order to analyze the error that emerges from compression a wide range of metrics
for various purposes exist. Verma et al. described the key aspects of comparative flow
analysis and subdivided it into three essential levels of comparison: data, feature and
image level [48]. The data level refers to any meaningful metric on the raw data, feature
level operations investigate the visualized entities and image level examination compares
two pictures with identical camera parameters [23, 50]. Here, the main emphasis lies on
feature and image level analysis and will be explained in the following Sections.

3.4.1. Geometric Evaluation

Subject to comparative analysis on a feature level are the generated trajectories of the
advection process. A commonly used accuracy metric is to calculate the Euclidean
distance between the approximate object and the ground truth.[48] For points p and q
in n-dimensional space Euclidean distance is defined as

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (3.9)

and hence penalizes any deviation [41]. Since the trajectories are complex objects that
are spatially defined by their comprising vertices, their distance is interpreted as the
average vertex distance. Here, the actual error is then obtained as the Root Mean
Square Error (RMSE) of the vertex distances. Given observations oi resembling the
measured vertex distance, predictions si set to the optimal distance of zero for i ∈ [1, n],
the RMSE is defined as [25]:

RMSE =

√√√√ 1

n

n∑
i=1

(si − oi)2 (3.10)

=

√√√√ 1

n

n∑
i=1

o2i (3.11)

24

3.4. ERROR ANALYSIS

The accuracy of the complete dataset is calculated by the weighted average of each
trajectories RMSE measure where the weights account for entities with varying amount
of vertices. Additionally, a global maximum RMSE metric is calculated for each dataset
by the average of each trajectory’s maximum RMSE measure.

3.4.2. Visual Evaluation

Images used for visual analysis resemble an information reduced 2D representation which
more directly reflect the perceived amount of information. Visual methods are solely
pixel-based and side-by-side comparison depicts the most basic method to obtain an
error value if no supplementary data is incorporated [48]. Two established visual er-
ror estimates are the peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [12]. The PSNR is noteworthy as it is a steadily reoccurring metric
throughout literature. However, it is an unbound measure which approaches infinity for
vanishing differences and is calculated for the whole image at once. The SSIM on the
other hand was designed as an improvement over PSNR for better correlation with the
human visual system (HVS) [12]. It operates on a normalized scale and is calculated
locally and averaged globally into a summarizing quality score. For these reasons the
SSIM resembles the core metric of visual analysis within this work.

The SSIM is calculated by combining the results of luminance l, contrast c and structure
comparison s using the following formula [49]:

SSIM(g, h) = l(g, h)α · c(g, h)β · s(g, h)γ (3.12)

where g and h are two image signals and α, β, γ > 0. The measure is taken locally
using a sliding window approach for which the original authors suggested a size of 11x11
pixels. The complete derivation of the SSIMs subformulas is given by Wang et al. [49].

To derive the PSNR score for an image, it is aggregated into the global Mean Square
Error (MSE) of pixel differences first and then processed by the following equation [12]:

PSNR(g, h) = 10 · log10 ·
(

2552

MSE(g, h)

)
(3.13)

The MSE is calculated analogous to the RMSE without applying the square-root and
the numerator of 255 depicts the maximum possible pixel value for a regular image with
8bit channels. A more in depth presentation of the PSNR and its comparison to SSIM
has been conducted by Horé and Ziou [12].

25

CHAPTER 4

RESEARCH APPROACH

Here, the implementation of the visualization pipeline, error analysis and the investigated
datasets are presented. Section 4.1 provides an overview of the analyzed data, followed
by the implementation in Section 4.2. The implementation is further subdivided into
three stages of processing which cover the data pre-processing stage, the visualization
process and post-processing.

4.1. Datasets

To test for a broader set of use-cases, three datasets were obtained from ETH Zürich
to test ASTC compression in different environments [7]. Accordingly, the representative
vector fields show each different characteristics in terms of flow, topological features and
application. Figure 4.1 shows exemplary visualizations of the data. All vector fields are
set in 3D spatial space with 32bit floating point precision per scalar. They all are saved
in the netCDF file format and designed as contiguous blocks for each component. A
short description of each dataset is given hereafter.

(a) Clouds (steady) (b) Half Cylinder
(unsteady)

(c) R/V Tangaroa
(unsteady)

Figure 4.1.: Example visualizations of the datasets used in this thesis [7].

27

CHAPTER 4. RESEARCH APPROACH

4.1.1. Research Vessel Tangaroa

Popinet et al. investigated the airflow distortion caused by turbulence around the re-
search vessel Tangaroa. They obtained experimental and simulation data for this cause,
of which the latter has been saved onto an unstructured grid holding relative wind speeds
as measured from the ships position [33]. The acquired dataset is reduced to a region
of interest of the original and has been resampled onto a regular grid using Gerris Flow
Solver [32].

Filesize 15.629 GB

Grid Resolution (X x Y x Z x T) 300 x 180 x 120 x 201

Simulation Domain [-0.35, 0.65] x [-0.3, 0.3] x [-0.5, -0.3] x [0, 2]

Spatial University Dimensionless

Temporal Unit Dimensionless

Element Unit Dimensionless

4.1.2. Half Cylinder Ensemble

Rojo et al. were concerned with visualization of unsteady vector fields which aimed to
provide a complete picture of the topology for every time slice. They constructed a
fluid simulation where the obstacle is a half cylinder for several Reynolds numbers on
an unstructured grid [2]. The investigated dataset holds the resampled version of the
source data for the Reynolds number 6400 on a regular grid.[32]

Filesize 22.265 GB

Grid Resolution (X x Y x Z x T) 640 x 240 x 80 x 151

Simulation Domain [-0.5, 7.5] x [-1.5, 1.5] x [-0.5, 0.5] x [0, 2]

Spatial Unit Dimensionless

Temporal Unit Dimensionless

Element Unit Dimensionless

28

4.2. IMPLEMENTATION

4.1.3. Cloud-Topped Boundary Layer

Stevens generated a cloud resolving boundary layer simulation with the UCLA-LES
model, holding some rising cumulus clouds lying on a regular grid [40].

Filesize 230.044 MB

Grid Resolution (X x Y x Z) 384 x 384 x 130

Simulation Domain [0, 10] x [0, 10] x [0, 3.2]

Spatial Unit kilometers

Element Unit meters per second

4.2. Implementation

To investigate the applicability of ASTC compression in the context of particle advection
I developed a software tool that allows to load binary or HDF5 formatted data and
as a first step to pre-process it for further use with the arm ASTC Encoder [20] and
rendering pipeline in general. Secondly, the prepared data is visualized in real-time
through an integration process whose output is forwarded to the rendering pipeline. A
C++ based approach using OpenGL to communicate with the GPU has been chosen
as the underlying architecture to obtain reasonable performance and exact timings of
the individual sub-processes. Two PC systems were used for investigation: A powerful
workstation and a regular laptop, both followingly denoted as such. This selection was
done because of hardware compatibility restraints imposed by the ASTC compression.
The workstation works on two Intel Xeon CPU E5-2680 v3 processors, 128GB DDR4
system memory and an 512GB system SSD in combination with a 7TB data HDD. The
laptop is a Lenovo T450s powered by an Intel i5-5200U processor with an Intel HD
Graphics 520 integrated GPU and 512MB shared video memory, 8GB DDR3 system
memory and a 500GB SSD.

The pipeline used in this work is constructed as two big conceptual steps:

Pre-process data

1. Convert source data into RGBA texture format

2. Optionally normalize & compress data texture

29

CHAPTER 4. RESEARCH APPROACH

Visualize data

1. Configure integration properties

2. Advect particles

3. Render result until new advection

Pre-processing happens on the more powerful workstation while the complete visualiza-
tion stage is performed on the home laptop. Evaluation happens both as an accom-
panying runtime process in case of performance measures and as an offline process to
investigate the geometric and visual error.

4.2.1. Pre-Processing

The visualization pipeline expects vector data as either tightly packed RGB(A) image
data or ASTC compressed textures. Therefore, the pre-processing stage comprises the
operations of data reordering and optionally ASTC compression. Thereby, the prepara-
tion of source data for direct advection is straightforward and only needs data reordering
if it does not already come in a tightly packed vector format. If the data will be com-
pressed as ASTC, the reordering will also encompass downsampling into 16 bit half float
and a normalization procedure. Normalization is necessary due to the LDR color pro-
file clamping the values to the range [0, 1] during compression. Though the HDR color
profile allows to exceed this boundary it is not supported by the available platforms.
The compression preceding normalization is a range based method using minimum and
maximum values of a certain region as defined below:

x′ =
x−min

max−min
(4.1)

with x′ denoting the normalized value and x the original one. Accordingly, the denor-
malization process during advection will need to reuse these minimum and maximum
value pairs.

The region heuristic within which to localize these minima and maxima was set to a
per depth layer basis. Two different approaches have been implemented to allow for an
initial estimation of the effect of normalization on the results:

Scalar Normalization (SN) that localizes a scalar maximum and minimum value
pair across all vector components and normalizes the original values using these
scalars.

30

4.2. IMPLEMENTATION

Figure 4.2.: L.t.r.: Conversion from source data to an ASTC encoded representation.
ti denotes texel i, bk an ASTC block.

Vector Normalization (VN) which normalizes using a maximum and minimum
vector comprised of each components extrema.

Compression is then invoked via the ASTC encoder on each depth layer in parallel. This
means the compressor will encode all 2D depth layers separately and output a sliced 3D
ASTC encoded representation of the input. To ensure staying within the maximum
texture size, time varying data is compressed to multiple files where each one refers to
a 3D chunk describing a single timestep. While the ASTC encoder is also able of native
3D compression, the available systems are not capable of native 3D decompression and
therefore the approach focuses on 2D compression. The whole preprocessing stage can
be seen in Figure 4.2.

4.2.2. Visualization

Goal of the visualization stage is to perform advection upon the pre-processed data
textures and some configuration. Finally, it will render the resulting trajectories until
a new advection process is invocated. While the render loop resembles a simple vertex
forward operation to the traditional rendering pipeline, presented in Section 3.2.2, the
advection process runs through a more thorough processing.

The particle tracer was implemented in iterative fashion on the GPU using at core
a Compute Shader within OpenGL. The shader program performs multiple steps: It
reconstructs vectors from the data textures, postprocesses the vectors as needed (e.g.
denormalization), performs the integration steps and finally saves the current particles
position and velocity. The iterative nature of the approach originates from the need to
interpret the vector field between two discrete timesteps. This problem was solved by

31

CHAPTER 4. RESEARCH APPROACH

Figure 4.3.: Vector look-up & interpolation during integration of ASTC compressed
data. ti,j denotes texel i at depth j, bi,j an ASTC block, vi,j the reconstructed vector, p
the interpolated result at a certain position.

linear interpolating the vectors of two timesteps si and si+1 according to current time
tcurr relative to si and si+1. However, the GPU imposes a limit on the maximum number
of active textures additionally to the limited video memory. Therefore, only the lower
bound of two data textures holding adjacent timesteps are uploaded to the GPU at a
time. Consequently the Compute Shader needs to be executed once for each passed
timestep pair. If the integration is applied over the complete time domain of n discrete
timesteps this will lead to a maximum of n− 1 invocations.

But prior to time interpolation, vectors are constructed in space for timesteps si and
si+1 by reading the respective data textures based on the particles current position and
interpolating them each in their local 3D space. Based on the underlying data structure
the GPU already interpolates intermediate texels very fast using its built-in hardware
support. This enables full trilinear interpolation of the source data that can be uploaded
as a 3D texture. ASTC compressed data however relies on the 2D texture array repre-
sentation due to the sliced 3D approach which only allows for GPU accelerated bilinear
interpolation in the plane. Depth interpolation is therefore implemented manually, in-
creasing the number of operations needed to construct a vector at the given position.
The process of vector reconstruction from an ASTC compressed texture is also shown
in Figure 4.3

Here, the ASTC compressed textures also need to be denormalized due to the LDR color
profile. A buffer holds the denormalization parameters in video memory and is read 2
or 6 times per vector, based on the normalization approach. Source data textures on
the other hand are processed directly. The total count of read operations for any setting
applied in this work can be seen in Table 4.1.

32

4.2. IMPLEMENTATION

Table 4.1.: Texture and buffer read operations needed during advection to retrieve a
trilinearly interpolated vector from a single texture. Time interpolated vectors effectively
need double the amount of read operations.

Texture Normalized Texture Reads Buffer Reads Total Reads

Source - 1 0 1

ASTC compressed
SN 2 4 6

VN 2 12 14

4.2.3. Evaluation

Finally, the data generated during the previous steps was evaluated according to the
measures described in Section 3.4. Performance ratings were obtained during runtime at
several intervals. To avoid artificial stalling, GPU timings were fetched in asynchronous
fashion. Geometric interpretation was implemented as an offline approach on the saved
vertex buffer contents generated during advection. Visual analysis happened on image
data at different perspectives on both source and compressed data. The SSIM was
calculated as a measure of visual distortion using a sliding non-overlapping window with
square size 11 as proposed in the original paper. Exponent parameters α, β, γ of the
SSIM formula were set to one. The individual SSIM values were used for visualizing
bad regions in the processed images and averaged to obtain a global SSIM score for the
respective image.

33

CHAPTER 5

RESULTS

In this chapter the results of the runtime and error measurements will be presented.
The examined datasets, underlying system and compression configurations were prior
explained in Sections 4.1 to 4.2.2. Followingly, the geometric error is investigated in
Section 5.1 first and will use distance based error metrics to ratify the error imposed by
the ASTC compression with regards to the chosen block size, preset and compression
time. Secondly, in Section 5.2 the visual error is described by methods of the field of
image comparison. In Section 5.3 the performance of the compression and integration
processes is presented.

Figure 5.1 shows the results of the integration process conducted on the source datasets.
The presented images are subsets of the originals focusing on the high dynamic regions
which were most sensitive to the ASTC compression.

(a) Clouds (b) Half Cylinder (c) Tangaroa

Figure 5.1.: Rendered integration results of the source datasets. Displayed are subim-
ages showing the highly dynamic regions.

35

CHAPTER 5. RESULTS

5.1. Geometric Error

The geometric interpretation of the error was measured by aggregating the unique vertex
pairs between source and compressed trajectory into Euclidean distances. These were
collected as the average RMS and maximum RMS over all trajectories. Since the type
of normalization prior to compression proofed to have considerate impact on the results,
all measurements were taken for the scalar normalized and vector normalized cases,
abbreviated as SN and VN. Details of the applied range based normalizations were
described in Section 4.2.1. In short, SN refers to the case where each vector is normalized
with the same values across each component and VN dictates the scenario in that each
vector is normalized with distinct values for each component.

In case of the trajectory error, a certain set of vertices called “boundary points” were
excluded from the results. A vertex was defined as a boundary point if it was integrated
beyond the vector fields boundaries, which therefore became ill-defined and was prema-
turely stopped from further integration. Since comparing a slightly displaced, eventually
prematurely stopped trajectory with a continued one does not give any meaningful in-
sight on the loss of accuracy but only introduces a growing penalty, the comparison
of these vertices has been limited to the well-defined instances only. Both source and
compressed trajectories were tested for boundary points and Table 5.1 shows how many
vertices were skipped and how many trajectories were considered prematurely termi-
nated.

Table 5.1.: Overview of the number of vertices skipped and trajectories counted as
early terminated if both source and compressed trajectories were tested for ill-defined
vertices beyond the vector fields boundaries. Measurements are given relative to the
total vertex and trajectory count. For compressed trajectories the exhaustive preset at
4x4 block size using vector normalization was used as reference.

Dataset Skipped #Total Vertices Early #Total Trajectories

Clouds 5.9% 33,750,000 9.2% 13,500

Halfcylinder 7.2% 54,000,000 7.6% 18,000

Tangaroa 20.0% 13,500,000 35.5% 6,750

5.1.1. Block Size Impact

Block sizes have been evaluated at different resolutions for each dataset, ranging from
4x4 to a maximum of 12x12, as depicted in Table 5.2. Measurements were taken for
the average and maximum RMS distance error using the Exhaustive compression preset.
The results are in grid space, where a distance magnitude of 1 corresponds to the distance
between two cells, allowing for limited comparability.

36

5.1. GEOMETRIC ERROR

Table 5.2.: RMS of the average and maximum trajectory error for each dataset and
normalization method using different block size configurations. Values were obtained
using the Exhaustive preset for compression.

Dataset Method Error 4x4 5x5 6x6 12x12

Clouds

SN
AVG 6.739 7.044 7.268 8.824

MAX 12.280 12.876 13.110 15.562

VN
AVG 5.410 5.902 6.355 8.175

MAX 10.587 11.419 12.054 14.687

Halfcylinder

SN
AVG 0.207 0.218 0.274

MAX 0.408 0.432 0.562

VN
AVG 0.203 0.224 0.257

MAX 0.406 0.460 0.535

Tangaroa

SN
AVG 0.330 0.327 0.351

MAX 0.605 0.611 0.647

VN
AVG 0.330

MAX 0.615

For all three datasets the average error ranges from 0.203 to 8.824 and the maximum error
resides between 0.406 and 15.562. The most prominent observation was the difference
of the Clouds dataset to the unsteady datasets. The measured error of the former is
consistently greater as opposed to the unsteady datasets, ranging from 5.410 to 15.562
for both error scores. Halfcylinder and Tangaroa on the other hand exhibit error scores
between 0.203 and 0.647 at most, therefore being consistently lower by at least one
magnitude. Choosing either normalization method had a measurable impact on the
error for all datasets with varying effect. The error distribution from the Clouds dataset
was most strongly affected by the applied method and choosing VN over SN resulted
in consistently lower error ratings, able to decrease the error by up to 19.8%. However,
the effect diminishes with increasing block size. The unsteady datasets error scores
reacted less severe to the applied normalization method, achieving a maximum error
decrease of 2.7%. In case of the Halfcylinder 5x5 and Tangaroa 4x4 scenario the error
even grew by up to 6.4% when applying VN as opposed to SN before compression. A
more consistent effect was observed when comparing the effects of increasing block size
resolution, meaning a decrease in bits spent per vector (bpv). Except for the Tangaroa
SN 5x5 scenario, lowering the bpv also lowered the error. The intensity of precision
loss varied for each dataset, but in all scenarios the loss was smaller than the relative
decrease in bpv. I.e., increasing block size from 4x4 to 5x5 lowers the bpv by 20%, but
only introduces an additional error of 10.3% at most. In case of the formerly mentioned
Tangaroa scenario, the average error decreased by 0.1% upon increasing block size to
5x5.

37

CHAPTER 5. RESULTS

Table 5.3.: Filesize of each dataset in source and ASTC representation using different
block sizes.

Dataset Source 4x4 5x5 6x6 12x12

Clouds 219 MB 18.2 MB 11.7 MB 8.12 MB 2.03 MB

Halfcylinder 20.7 GB 1.72 GB 1.1GB 0.79 GB

Tangaroa 14.5 GB 1.21 GB 0.79 GB 0.55 GB

The storage savings enabled by the application of ASTC compression is depicted in
Table 5.3. They are only influenced by the block resolution since each block has a fixed
memory footprint. Consequently, the compression ratios are equal across the datasets
and therefore it is safe to express a general statement on efficiency. The highest bitrate
blocksize 4x4 achieves already a compression ratio of 8.3% which alone easily fits the
Halfcylinder dataset into a regular GPUs video memory. Following square blocksizes
reduce it further to 5.3%, 3.7% and 0.9% at coarsest resolution.

5.1.2. Preset Impact

Staying with the most precise block size setting of 4x4, different compression presets
ranging from Fast to Exhaustive have been evaluated. The steady Clouds dataset was
tested for all available presets, whereas the unsteady datasets were limited to the two
most optimizing presets Exhaustive and Thorough, as denoted in Table 5.4. The eval-
uated error scores are again the average and maximum RMS distance in grid space,
where a distance magnitude of 1 corresponds to the distance between two cells for all
datasets.

Figure 5.2.: Timings of each datasets compression process in hours. Values were
obtained using the 4x4 block size and VN method. Measurements were taken on the
high performance workstation.

The results in Table 5.4 extend the observations from prior Section 5.1.1 that have been
described at block size 4x4. The observed range of error scores across the investigated

38

5.1. GEOMETRIC ERROR

presets is lower compared to changes in block size resolution. It resides within 5.41 to
13.164 for the Clouds dataset and 0.203 up to 0.615 for the unsteady datasets. A lower
preset generally lowered the accuracy, except for one mentionable scenario. The Fast
preset resembles the least optimized scenario and also generally introduced the greatest
amount of error compared to the Exhaustive preset when investigated for the Clouds
VN scenario. However, in case of the overall worse performing Clouds SN scenario, the
measured error decreased at the Fast preset. Here, the error was lower by up to 7.9% as
compared to the Exhaustive preset and therefore coined the highest precision across all
presets tested for this scenario. Similar to prior block size investigation, the Tangaroa
dataset performed better by 0.5% when using a less optimized preset.

Table 5.4.: RMS of the average and maximum trajectory error for each dataset and
normalization method using different compression presets. Values were obtained using
the 4x4 block size configuration for compression.

Dataset Method Error Exhaustive Thorough Medium Fast

Clouds

SN
AVG 6.739 6.912 7.273 6.209

MAX 12.280 12.581 13.164 11.560

VN
AVG 5.410 5.565 5.754 5.907

MAX 10.587 10.835 11.118 11.450

Halfcylinder

SN
AVG 0.207 0.211

MAX 0.408 0.429

VN
AVG 0.203 0.209

MAX 0.406 0.415

Tangaroa

SN
AVG 0.330 0.329

MAX 0.605 0.611

VN
AVG 0.330 0.330

MAX 0.615 0.612

The spatial distribution of the error inferred from the VN method can be seen in Figure
5.3. It shows the individual average trajectory error projected to the XY plane for each
dataset and preset, using a fixed block size of 4x4. The visualization happened in seed
space, which refers to an evenly spaced regular grid where each node represents the
trajectory’s initial seeds position. The projection shows, that the consistently dynamic
Clouds dataset has an evenly high error score within the whole integration domain. The
Half Cylinder and Tangaroa datasets on the other hand show comparably diminishing
small errors except for few regions. These regions are close to the obstacle within each
simulation where the flow is most chaotic and exhibits peaks in the error score of the
same magnitude as the average error of the Clouds dataset.

39

CHAPTER 5. RESULTS

Figure 5.3.: Individual average trajectory error projected to the XY plane. Visualiza-
tion in seed space, where a grid node represents a trajectories initial seed. Projection
was performed by averaging over the Z axis and contour lines are established to separate
regions of different error magnitude. Values were obtained using the 4x4 block size and
VN method.

5.2. Visual Error

Next, the visual error is evaluated for each dataset at the highest compression settings.
Multiple images were taken for each dataset from unique viewpoints of the source and
compressed integration results. The error was measured in a sliding-window based SSIM
approach as described in Section 3.4. Figure 5.4 shows selected visual samples for each
dataset’s local SSIM values. The images were obtained from the following perspectives:
(a) front, (b) back & (c) back. Visual examination shows similar behavior as the previous
analysis, where the error is lower in regions of laminar flow and higher in regions of
turbulent flow. The global SSIMs of the scenarios shown in Figure 5.4 lie within the
range 0.658 and 0.79 which indicate a fairly high amount of distortion. Also, it must be
noted that the shown images display subregions of the original, which exhibit a certain
amount of empty space that dampens the global SSIM error.

The global SSIM varies considerably between datasets and is highly dependent on the
chosen viewpoint. Table 5.5 shows the global SSIM values for each scenario. The

40

5.3. PERFORMANCE

(a) Clouds
Avg. SSIM: 0.711

(b) Half Cylinder
Avg. SSIM: 0.658

(c) Tangaroa
Avg. SSIM: 0.79

Figure 5.4.: Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth. Images are subregions of the originals
showing the high dynamic regions, whereas the SSIM was calculated on the whole image.

corresponding images are shown in the appendix. Observations exhibit lower errors in
scenarios which capture a macroscopic view of the whole dataset whereas the results
deteriorate quickly for detailed close-up captures of singular features.

Table 5.5.: SSIM measures of image pairs between source and compressed trajectories.
The letters A-H resemble the different unique viewpoints from which each image was
evaluated. The compressed representatives were obtained using Exhaustive compression,
4x4 block size and the VN method. All images can be found in the Appendix.

Dataset A B C D E F G H

Clouds 0.711 0.236 0.920 0.399 0.454 0.349

Halfcylinder 0.818 0.836 0.658 0.422 0.866 0.294 0.232 0.960

Tangaroa 0.918 0.790 0.806 0.924 0.440 0.509 0.589

5.3. Performance

Compared to prior observations, the investigation of advection performance yielded the
most prominent results. The measures referenced in this section were taken for the
source and compressed datasets. The latter ones are represented by the most optimized
Exhaustive preset, 4x4 block resolution and both SN and VN method.

For large unsteady datasets the data upload processes to GPU consumed the most
amount of time compared to the compute process. Thereby the source datasets of Half
Cylinder and Tangaroa had accumulated integration timings of 1.5 seconds or less, which

41

CHAPTER 5. RESULTS

Table 5.6.: Timings of the data upload processes. Values obtained from compressed
datasets with Exhaustive preset and 4x4 blocksize configuration.

Dataset Method Avg [ms] Max [ms] Min [ms] Total [s] Ratio

Clouds

Source 38 38 38 0.038

SN 2.5 2.5 2.5 0.0025 6.5%

VN 2.7 2.7 2.7 0.0027 6.9%

Halfcylinder

Source 1033.9 4511.9 49.5 155.1

SN 239.7 6372.2 2.9 35.9 23.2%

VN 225.7 5714.4 2.8 33.9 21.8%

Tangaroa

Source 537.2 4622.8 24.2 107.44

SN 121.9 3348.6 1.6 24.37 22.7%

VN 122.5 3216.3 1.6 24.5 22.8%

Table 5.7.: Timings of the particle advection (compute) processes. Values obtained
from compressed datasets with Exhaustive preset and 4x4 blocksize configuration.

Dataset Method Avg [ms] Max [ms] Min [ms] Total [ms] Ratio

Clouds

Source 244.3 244.3 244.3 244.3

SN 406.1 406.1 406.1 406.1 166.2%

VN 448.1 448.1 448.1 448.1 183.4%

Halfcylinder

Source 6.7 8.7 5.6 1013.1

SN 7.8 16.0 7.2 1170.6 115.5%

VN 9.6 11.4 8.4 1443.7 142.5%

Tangaroa

Source 1.2 2.3 1.0 247.3

SN 1.3 2.4 1.0 270.6 109.4%

VN 1.5 2.9 1.1 303.3 122.6%

were two magnitudes lower compared to accumulated upload timings of 155.1 seconds
for the Half Cylinder dataset. Tables 5.6 and 5.7 show the obtained timings for all
datasets normalization methods. With compression applied, the data upload time could
be reduced by 86.8% in case of the Half Cylinder dataset and similarly for the Tan-
garoa scenario. The Clouds dataset was even able to reduce the upload time by 93.5%.
However, the Clouds dataset also had significantly smaller upload times compared to
the unsteady candidates. The compression also imposed an overhead to the integration
process. Invocation of the Compute Shader lasted 9.4% to 83.4% longer, depending on
the dataset and the applied normalization method. VN normalized datasets needed 12
Shader Storage Buffer accesses per vector for denormalization which were responsible

42

5.3. PERFORMANCE

for on average 19.1% higher timings compared to SN normalized datasets with only 2
buffer accesses per vector.

Table 5.8.: Timings of each datasets preprocessing before compression in seconds.
Measurements were taken on the high performance workstation.

Dataset Method Load File [s] Find Peaks [s] Convert [s]

Clouds
SN 0.502 0.314 0.908

VN 0.598 0.436 1.627

Halfcylinder
SN 54.180 34.417 90.787

VN 57.723 38.522 158.605

Tangaroa
SN 41.767 25.381 64.195

VN 39.031 23.988 113.916

The pre-processing imposes an additional runtime overhead to be executed once per
dataset. Besides the implementation and dataset dependent steps of loading the file,
gathering information for normalization and converting the dataset into a suiting repre-
sentation, as presented in Table 5.8, especially the encoding itself created a large time
overhead. The encoding process performance was heavily influenced by the choice of
preset and the encoder’s ability to quickly find a good encoding. In Table 5.9 the com-
pression behavior across the datasets and presets is presented. Timings decrease with
lower presets in each scenario, but there was a gap between the observations of the steady
dataset and the unsteady ones. Compared to the Clouds dataset, the unsteady datasets
showed a significantly higher encoding throughput which was able to process three times
the data on average. Lower presets were investigated for the Clouds dataset only, but
these showed also great acceleration potential over the Thorough preset. The lowest
preset promised the highest average encoding throughput by a ratio of 3 compared to
the preceding Medium preset.

Table 5.9.: The size of each dataset in Megabyte divided by the timings of each datasets
compression process in seconds. Measurements were taken on the high performance
workstation.
Dataset Method Exhaustive [MB

s
] Thorough [MB

s
] Medium [MB

s
] Fast [MB

s
]

Clouds
SN 0.614 1.065 2.089 7.565

VN 0.623 1.064 1.859 6.268

Halfcylinder
SN 0.987 3.184

VN 0.968 3.103

Tangaroa
SN 0.804 2.828

VN 0.795 2.612

43

CHAPTER 6

DISCUSSION

The conducted study pursued the answers to two critical questions regarding volumetric
compression in the context of scientific visualization: How accurate are the results and
how fast can they be computed? The preceding observations have shown that the global
precision differs strongly between a consistently dynamic behaving dataset and a mostly
laminar flow system. A chaotic flow as present in the Clouds dataset resulted in an
average deviation of 5.4 cells distance which can already result in strongly altered tra-
jectories as eventually no original grid node is used for integration anymore. The spatial
error distribution obtained per trajectory seen in Figure 5.3 and the visual examination
demonstrate both that this error is not raised by outliers but can be localized through-
out the visualization. The unsteady datasets comprised of mostly laminar flow achieved
much better global error scores around 0.2 and 0.33, but also show strong local deteri-
oration in regions of chaotic flow behavior imposed by the presence of obstacles. The
local SSIM measures support this observation and detect strong image-level alterations
from the source dataset in regions where the trajectories show high curvature. Next to
the mandatory precision loss of lossy compression, there are multiple possible reasons to
these observations: The incapability of the encoder to adequately represent a fixed region
of grid nodes with a limited number of per-texel weights and color endpoints, a possibly
negative impact of the applied normalization method or bad optimization heuristics of
the encoder itself. Fixed-size region encoding captures many grid nodes, 16 at a min-
imum, but the number of partitions holding different color endpoint pairs and weights
assignable per texel are strongly limited. Only two color channels can be compressed
uncorrelated due to the maximum of two weights and if uncorrelated encoding is active
the maximum number of partitions is limited to three[30] which may not be enough
to encode 16 3D vectors of quickly changing vector field regions. A significant impact
of normalization on accuracy can be detected in the Clouds dataset and was seen as a
trend across all datasets. This observation rises the assumption that the normalization

45

CHAPTER 6. DISCUSSION

heuristics especially influence regions of dynamic behavior which is more visible in the
Clouds dataset and suppressed for the unsteady datasets. An extended investigation of
this approach using an HDR color profile capable texture compression is needed to rule
out any error imposed by normalization in chaotic regions. Finally, the encoder showed
a bad optimization habit for the Clouds SN scenario which had best error scores at the
least optimizing Fast preset. Though the vector field is being interpreted as colors, a
PSNR based optimization approach may not be suited for the input data. An angular
based error metric is also offered by the encoder, however only for normalized input
vectors with unit magnitude. In this case the encoder omits the third component as it
can be recomputed manually later, given the remaining available information. However,
the chosen implementation approach did not normalize the vector to unit magnitude and
therefore this error metric was not available for block optimization. Comparative con-
tributions for 3D vector field visualization all chose custom algorithms which needed a
shader dependent decompression algorithm but also offered more freedom for choosing or
implementing a custom encoder [11, 19, 45]. Despite different visualization approaches
were investigated, all reported a successful acceleration of the whole visualization pro-
cess while still maintaining acceptable accuracy. A fair comparison of error scores for
different datasets and implementations is not possible, but it can give a rough estimate
about the relative accuracy. Treib et al. investigated the subject of particle tracing in
turbulent 4D vector fields with respect to the trajectory RMS distance error as well.
Their observations translated into uniform grid space showed comparable accuracy error
which was slightly lower with a score of 3.2 compared to the Clouds datasets respective
value of 5.4 [45].

Since a loss in accuracy is deemed acceptable for lossy compression techniques a signif-
icant acceleration of the visualization process is expected in exchange. The presented
approach achieved impressive results with the underlying test system and was able to
reduce the advection runtime down to 22%. This however only holds true for large
datasets as upload timings could be reduced whereas the compute stages recorded an
increase in runtime. The compute stage slowdown was expected due to the numerous
adjustments needed to enable ASTC encoding in the first place, i.e. normalization and
additional texture accesses because of the sliced 3D approach. But it is also seen as
negligible for realistically sized datasets since here the compute stage needed around 1
second at most compared to 155 seconds of pure upload times. Comparative studies
achieved 10% higher performance ratios for their data upload stage and less penalty for
their compute stage despite a custom shader programmed decompression.[45] But exact
performance comparisons are difficult, since this approach was limited to an integrated
GPU which does not share the advantages of dedicated fast video memory and a huge
amount of shader cores.

The encoding process itself showed that choosing the lowest accurate Fast preset can have
benefits over the more optimizing presets. Compression duration strongly depended on
the applied preset determining the optimization expenses and the ability of the encoder
to find a good encoding fast. Flow fields with mostly laminar behavior were easier to

46

encode and achieved a three times faster encoding throughput compared to the Clouds
dataset at Thorough preset. However, encoding the larger scale datasets with higher
precision presets needed an immense amount of time even on a powerful workstation
with concurrent encoding of each timeslice. The Fast preset on the other hand allowed
a very high throughput efficiency for the Clouds dataset while exhibiting only slightly
higher error scores. An investigation of the unsteady datasets at this preset is not
available, but if the same amount of throughput is assumed the encoding duration could
be reduced by 75% compared to the Exhaustive preset. Even faster results can be
expected if the encoder still benefits from the better optimizable behavior of laminar
flow. If the additional error for the unsteady datasets resides in the same range as for
the Clouds scenario, the encoding performance could prove a suitable compromise to
enable fast visualization of the dataset.

47

CHAPTER 7

CONCLUSION

In this study the applicability of ASTC compression on 3D and 4D vector fields in
the context of particle advection has been investigated. Subject of analysis was the
accuracy by which the trajectories could be reconstructed using the compressed dataset
and the performance of the visualization and encoding processes. It could be shown that
ASTC compression is well applicable if an accuracy loss in regions of very dynamic flow
behavior is acceptable. The runtime of visualization processes could be reduced though
the computation itself experienced an additional runtime overhead due to normalization
and manual depth interpolation. Since computation runtime resided in the range of one
second the absolute overhead imposed by the additional operations was negligible. The
encoding performance was dependent on the encoders ability to find good encodings
fast and the chosen preset. It was shown that choosing the best optimized preset does
not always guarantee the best encoding and does not justify the additional runtime
needed to fully encode the dataset. As the error stayed in the same magnitude for all
scenarios that have been tested choosing the least optimizing preset is suggested as the
best compromise for good performance of the complete visualization pipeline including
the pre-processing at the cost of accuracy. Choosing a greater block size resolution on
the other hand is generally not advised as the accuracy decreases significantly and fast.
Further investigation of texture compression in the context of scientific visualization is
advised as the results are overall promising in the face of the optimizations that can and
should be made in future works. Major benefits are expected by the choice of a different
sophisticated texture compression like BC6H which is fully supported by todays GPUs
and is designed for the HDR color profile that offers a greater range of values in the
encoding.

49

CHAPTER 8

BIBLIOGRAPHY

[1] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, et al. Real-time rendering. AK
Peters/CRC Press, 2018.

[2] Irene Baeza Rojo and Tobias Günther. “Vector Field Topology of Time-Dependent
Flows in a Steady Reference Frame”. In: IEEE Transactions on Visualization and
Computer Graphics (Proc. IEEE Scientific Visualization) (2019).

[3] M. Balsa Rodŕıguez et al. “State-of-the-Art in Compressed GPU-Based Direct
Volume Rendering”. In: Comput. Graph. Forum 33.6 (Sept. 2014), pp. 77–100.
issn: 0167-7055.

[4] Johanna Beyer, Markus Hadwiger, and Hanspeter Pfister. “State-of-the-Art in
GPU-Based Large-Scale Volume Visualization”. In: Computer Graphics Forum
34.8 (2015), pp. 13–37.

[5] T. Blu, P. Thevenaz, and M. Unser. “Linear interpolation revitalized”. In: IEEE
Transactions on Image Processing 13.5 (2004), pp. 710–719.

[6] J. Chen et al. “Understanding Performance-Quality Trade-offs in Scientific Vi-
sualization Workflows with Lossy Compression”. In: 2019 IEEE/ACM 5th In-
ternational Workshop on Data Analysis and Reduction for Big Scientific Data
(DRBSD-5). 2019, pp. 1–7.

[7] Computer Graphics Laboratory of ETH Zürich. url: https://cgl.ethz.ch/
research/visualization/data.php.

[8] Dan Dolonius et al. “Compressing Color Data for Voxelized Surface Geometry”.
In: IEEE Transactions on Visualization and Computer Graphics PP (Aug. 2017),
pp. 1–1.

[9] T. Frühauf. “Raycasting vector fields”. In: Proceedings of Seventh Annual IEEE
Visualization ’96. 1996, pp. 115–120.

51

CHAPTER 8. BIBLIOGRAPHY

[10] Antonio Galbis and Manuel Maestre. Vector analysis versus vector calculus. Springer
Science & Business Media, 2012.

[11] Tomáš Golembiovský. “Compression of vector field changing in time”. PhD thesis.
Masarykova univerzita, Fakulta informatiky, 2010.

[12] Alain Horé and Djemel Ziou. “Image Quality Metrics: PSNR vs. SSIM”. In: 2010
20th International Conference on Pattern Recognition. 2010, pp. 2366–2369.

[13] V. Interrante and C. Grosch. “Strategies for effectively visualizing 3D flow with
volume LIC”. In: Proceedings. Visualization ’97 (Cat. No. 97CB36155). 1997,
pp. 421–424.

[14] Introducing RDNA Architecture. Tech. rep. Advanced Micro Devices, Inc., 2019.

[15] Johannes Kehrer and Helwig Hauser. “Visualization and Visual Analysis of Mul-
tifaceted Scientific Data: A Survey”. In: IEEE Transactions on Visualization and
Computer Graphics 19 (Mar. 2013), pp. 495–513.

[16] Khronos Data Format Specification. Version 1.3.1. Apr. 2020. url: https://
www.khronos.org/registry/DataFormat/specs/1.3/dataformat.
1.3.inline.html.

[17] J. Kruger et al. “A particle system for interactive visualization of 3D flows”. In:
IEEE Transactions on Visualization and Computer Graphics 11.6 (Nov. 2005),
pp. 744–756. issn: 1941-0506.

[18] E. LaMar, B. Hamann, and K. I. Joy. “Multiresolution techniques for interac-
tive texture-based volume visualization”. In: Proceedings Visualization ’99 (Cat.
No.99CB37067). 1999, pp. 355–543.

[19] Xin Liang et al. “Toward Feature-Preserving 2D and 3D Vector Field Compres-
sion”. In: 2020 IEEE Pacific Visualization Symposium (PacificVis). 2020, pp. 81–
90.

[20] Arm Limited. ASTC Encoder. 2020. url: https : / / github . com / ARM -
software/astc-encoder.

[21] E. B. Lum, Kwan-Liu Ma, and J. Clyne. “Texture hardware assisted rendering
of time-varying volume data”. In: Proceedings Visualization, 2001. VIS ’01. 2001,
pp. 263–563.

[22] N Max. “Progress in Scientific Visualization”. In: The Visual Computer 21.12
(Nov. 2004).

[23] Tony McLoughlin et al. “Over Two Decades of Integration-Based, Geometric Flow
Visualization”. In: Computer Graphics Forum 29.6 (2010), pp. 1807–1829.

[24] Daisuke Nagayasu, Fumihiko Ino, and Kenichi Hagihara. “Two-stage compression
for fast volume rendering of time-varying scalar data”. In: Nov. 2006, pp. 275–284.

52

[25] Simon P. Neill and M. Reza Hashemi. “Chapter 8 - Ocean Modelling for Resource
Characterization”. In: Fundamentals of Ocean Renewable Energy. Ed. by Simon P.
Neill and M. Reza Hashemi. E-Business Solutions. Academic Press, 2018, pp. 193–
235. isbn: 978-0-12-810448-4.

[26] J. Nickolls and W. J. Dally. “The GPU Computing Era”. In: IEEE Micro 30.2
(2010), pp. 56–69.

[27] NV texture compression vtc. url: https://www.khronos.org/registry/
OpenGL/extensions/NV/NV_texture_compression_vtc.txt.

[28] NVIDIA Ampere GA102 GPU Architecture. Tech. rep. V2.0. NVIDIA Corporation,
2021.

[29] J. Nystad et al. “Adaptive Scalable Texture Compression”. In: Proceedings of the
Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graph-
ics. EGGH-HPG’12. Paris, France: Eurographics Association, 2012, pp. 105–114.

[30] OpenGL Graphics System: A Specification. Version 4.5 (Core Profile). June 2017.
url: https://www.khronos.org/registry/OpenGL/specs/gl/
glspec45.core.pdf.

[31] John Owens et al. “GPU computing”. In: Proceedings of the IEEE 96 (May 2008),
pp. 879–899.

[32] S. Popinet. “Free Computational Fluid Dynamics”. In: ClusterWorld 2.6 (2004).
url: http://gfs.sf.net/.

[33] Stéphane Popinet, Murray Smith, and Craig Stevens. “Experimental and Numeri-
cal Study of the Turbulence Characteristics of Airflow around a Research Vessel”.
In: Journal of Atmospheric and Oceanic Technology 21.10 (2004), pp. 1575–1589.

[34] William H Press et al. Numerical recipes 3rd edition: The art of scientific comput-
ing. Cambridge university press, 2007.

[35] P. Ratanaworabhan, Jian Ke, and M. Burtscher. “Fast lossless compression of
scientific floating-point data”. In: Data Compression Conference (DCC’06). 2006,
pp. 133–142.

[36] C. Rezk-Salama et al. “Interactive exploration of volume line integral convo-
lution based on 3D-texture mapping”. In: Proceedings Visualization ’99 (Cat.
No.99CB37067). Oct. 1999, pp. 233–528.

[37] Khalid Sayood. “Data Compression.” In: Encyclopedia of Information Systems 1
(2002), pp. 423–444.

[38] Graham Sellers, Richard S. Wright, and Nicholas Haemel. OpenGL Superbible:
Comprehensive Tutorial and Reference. 7th. Addison-Wesley Professional, 2015.

[39] Dave Shreiner and The Khronos OpenGL ARB Working Group. OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1.
7th. Addison-Wesley Professional, 2009.

[40] Bjorn Stevens. Introduction to UCLA-LES. 2013.

53

CHAPTER 8. BIBLIOGRAPHY

[41] John Tabak. Geometry: the language of space and form. Infobase Publishing, 2014.

[42] Christian Teitzel, Roberto Grosso, and Thomas Ertl. “Efficient and reliable in-
tegration methods for particle tracing in unsteady flows on discrete meshes”. In:
Visualization in Scientific Computing’97. Springer, 1997, pp. 31–41.

[43] H. Theisel, Ch. Rössl, and H.-P. Seidel. “Compression of 2D Vector Fields Under
Guaranteed Topology Preservation”. In: Computer Graphics Forum 22.3 (2003),
pp. 333–342.

[44] Marc Treib et al. “Analyzing the Effect of Lossy Compression on Particle Traces
in Turbulent Vector Fields.” In: IVAPP. 2015, pp. 279–288.

[45] Marc Treib et al. “Compression and Heuristic Caching for GPU Particle Tracing
in Turbulent Vector Fields”. In: vol. 598. Feb. 2016, pp. 144–165. isbn: 978-3-319-
29970-9.

[46] Marc Treib et al. “Interactive Editing of GigaSample Terrain Fields”. In: Computer
Graphics Forum 31 (May 2012), pp. 383–392.

[47] Marc Treib et al. “Turbulence Visualization at the Terascale on Desktop PCs”.
In: Visualization and Computer Graphics, IEEE Transactions on 18 (Dec. 2012),
pp. 2169–2177.

[48] Vivek Verma and Alex Pang. “Comparative flow visualization”. In: Visualization
and Computer Graphics, IEEE Transactions on 10 (Dec. 2004), pp. 609–624.

[49] Zhou Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612.

[50] P. Williams, S. Uselton, and Marisa K. Chancellor. “Foundations for Measuring
Volume Rendering Quality”. In: 1997.

[51] Xiangong Ye, D. Kao, and A. Pang. “Strategy for seeding 3D streamlines”. In:
VIS 05. IEEE Visualization, 2005. Oct. 2005, pp. 471–478.

[52] R. Yagel et al. “Hardware assisted volume rendering of unstructured grids by
incremental slicing”. In: Proceedings of 1996 Symposium on Volume Visualization.
Oct. 1996, pp. 55–62.

54

Appendices

55

57

APPENDIX A. ADDITIONAL RESULTS

APPENDIX A

ADDITIONAL RESULTS

A.1. Geometric Error

Table A.1.: Normalized RMS of the average vector component error for each data set
with different compression presets and normalization methods. Range based Normal-
ization of the RMS by componentwise global maximum and minimum of the dataset.
Values taken from 4x4 block size configuration.

Dataset Exhaustive Thorough Medium Fast

Clouds

X 2.321e-3 2.521e-3 2.672e-3 3.075e-3

SN Y 1.878e-3 2.044e-3 2.164e-3 2.521e-3

Z 1.480e-3 1.512e-3 1.538e-3 1.820e-3

X 2.012e-3 2.157e-3 2.295e-3 2.592e-3

VN Y 1.681e-3 1.814e-3 1.932e-3 2.235e-3

Z 1.797e-3 1.919e-3 1.995e-3 2.223e-3

Halfcylinder

X 4.826e-4 5.461e-4

SN Y 4.695e-4 5.436e-4

Z 6.665e-4 7.408e-4

X 5.610e-4 6.564e-4

VN Y 5.072e-4 5.932e-4

Z 3.585e-4 4.027e-4

Tangaroa

X 4.799e-4 5.449e-4

SN Y 5.819e-4 6.781e-4

Z 7.267e-4 8.290e-4

X 5.485e-4 6.410e-4

VN Y 5.437e-4 6.272e-4

Z 6.069e-4 6.829e-4

58

A.1. GEOMETRIC ERROR

Table A.2.: Normalized RMS of the average vector component error for each data set
with different compression presets and normalization methods. Range based Normal-
ization of the RMS by componentwise global maximum and minimum of the dataset.
Measurements at lower presets are set relative to the Exhaustive preset. Values taken
from 4x4 block size configuration.

Dataset Method Dim. Exhaustive Thorough Medium Fast

Clouds

X 2.321e-3 108.6% 115.1% 132.5%

SN Y 1.878e-3 108.8% 115.2% 134.2%

Z 1.480e-3 102.2% 103.9% 123%

X 2.012e-3 107.2% 114.1% 128.8%

VN Y 1.681e-3 107.9% 114.9% 132.9%

Z 1.797e-3 106.8% 111% 123.7%

Halfcylinder

X 4.826e-4 113.2%

SN Y 4.695e-4 115.8%

Z 6.665e-4 111.1%

X 5.610e-4 117%

VN Y 5.072e-4 116.9%

Z 3.585e-4 112.3%

Tangaroa

X 4.799e-4 113.5%

SN Y 5.819e-4 116.5%

Z 7.267e-4 114.1%

X 5.485e-4 98.8%

VN Y 5.437e-4 115.3%

Z 6.069e-4 112.5%

59

APPENDIX A. ADDITIONAL RESULTS

Table A.3.: RMS of the average and maximum trajectory error for each dataset and
normalization method using different block size configurations. Measurements at lower
resolutions are set relative to the 4x4 block size resolution. Values were obtained using
the Exhaustive preset for compression.

Dataset Method Error 4x4 5x5 6x6 12x12

Clouds

SN
AVG 6.739 104.5% 107.8% 130.9%

MAX 12.280 104.8% 106.6% 126.7%

VN
AVG 5.410 109.1% 117.5% 151.1%

MAX 10.587 107.8% 113.6% 138.7%

Halfcylinder

SN
AVG 0.207 105.3% 132.4%

MAX 0.408 105.9% 137.7%

VN
AVG 0.203 110.3% 126.0%

MAX 0.406 113.3% 131.8%

Tangaroa

SN
AVG 0.330 99.99% 106.4%

MAX 0.605 101.0% 106.9%

VN
AVG 0.330

MAX 0.615

Table A.4.: RMS of the average and maximum trajectory error for each dataset and
normalization method using different compression presets. Measurements at lower pre-
sets are set relative to the Exhaustive preset. Values were obtained using the 4x4 block
size configuration for compression.

Dataset Method Error Exhaustive Thorough Medium Fast

Clouds

SN
AVG 6.739 102.6% 107.9% 92.1%

MAX 12.280 102.4% 107.2% 94.1%

VN
AVG 5.410 102.9% 106.4% 109.2%

MAX 10.587 102.3% 105.0% 108.1%

Halfcylinder

SN
AVG 0.207 101.9%

MAX 0.408 105.1%

VN
AVG 0.203 102.9%

MAX 0.406 102.2%

Tangaroa

SN
AVG 0.330 99.7%

MAX 0.605 100.1%

VN
AVG 0.330 0.0%

MAX 0.615 99.5%

60

A.2. VISUAL ERROR

A.2. Visual Error

(a) Clouds A
Avg. SSIM: 0.711

(b) Clouds B
Avg. SSIM: 0.236

(c) Clouds C
Avg. SSIM: 0.920

(d) Clouds D
Avg. SSIM: 0.399

(e) Clouds E
Avg. SSIM: 0.454

(f) Clouds F
Avg. SSIM: 0.349

Figure A.1.: Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth.

61

APPENDIX A. ADDITIONAL RESULTS

(a) Half Cylinder A
Avg. SSIM: 0.818

(b) Half Cylinder B
Avg. SSIM: 0.836

(c) Half Cylinder C
Avg. SSIM: 0.658

(d) Half Cylinder D
Avg. SSIM: 0.422

(e) Half Cylinder E
Avg. SSIM: 0.866

(f) Half Cylinder F
Avg. SSIM: 0.294

(g) Half Cylinder G
Avg. SSIM: 0.232

(h) Half Cylinder H
Avg. SSIM: 0.960

Figure A.2.: Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth.

62

A.2. VISUAL ERROR

(a) Tangaroa A
Avg. SSIM: 0.918

(b) Tangaroa B
Avg. SSIM: 0.790

(c) Tangaroa C
Avg. SSIM: 0.806

(d) Tangaroa D
Avg. SSIM: 0.924

(e) Tangaroa E
Avg. SSIM: 0.440

(f) Tangaroa F
Avg. SSIM: 0.509

(g) Tangaroa G
Avg. SSIM: 0.589

Figure A.3.: Visualized local SSIM error calculated at a square window size of 11. Red
regions mean high deviations from ground truth.

63

APPENDIX A. ADDITIONAL RESULTS

A.3. Performance

Table A.5.: Timings of each datasets compression process in seconds. Measurements
were taken on the high performance workstation.

Dataset Method Exhaustive [s] Thorough [s] Medium [s] Fast [s]

Clouds
SN 357 206 105 29

VN 352 201 118 35

Halfcylinder
SN 21, 516 6, 668

VN 21, 944 6, 843

Tangaroa
SN 18, 537 5, 270

VN 18, 741 5, 707

Table A.6.: Timings of the compression processes for each dataset and normalization
method using different presets. Measurements at lower presets are set relative to the
Exhaustive preset. Values were obtained using the 4x4 block size configuration.

Dataset Method Exhaustive Thorough Medium Fast

Clouds
SN 357s 57.7% 29.4% 8.1%

VN 352s 57.1% 33.5% 9.9%

Halfcylinder
SN 21, 516s 31%

VN 21, 944s 31.2%

Tangaroa
SN 18, 537s 28.4%

VN 18, 741s 30.4%s

64

